MODEL SR540

 OPTICAL CHOPPER

 OPTICAL CHOPPER}
$\|^{S R S} S_{\text {stantor R Researach Systems }}$

MODEL SR540

OPTICAL CHOPPER

Copyright © 1986, 1988, 1995, 1997
Stanford Research Systems, Inc.
All Rights Reserved
Rev. 2.5 (03/2005)

Stanford Research Systems, Inc.
1290-D Reamwood Ave.
Sunnyvale, CA 94089 USA
(408) 744-9040

TABLE OF CONTENTS

Symbols used 2
Specifications 3
Safety \& Preparation for Use 4
Quick Start Instructions 5
Operating Instructions
Introduction 6
Frequency of Operation 6
Changing Blades 6
Baseplate Removal 6
Applications
Single Beam 7
Single Beam Chopping to 20 kHz 8
Dual Beam Experiments 10
Detection at Sum \& Difference Frequencies 11
Variable Aperture 11
Calibration 12
Circuit Description
Motor Speed Control 12
Optical Pick-Offs 12
Frequency Synthesis 13
Frequency Display 13
Power Supplies 14
Parts List 15
PC Layout 19
Schematic 21

Symbols you may find on SRS products.

Symbol	Description
\bigcirc	Alternating current
	Caution - risk of electric shock
17	Frame or chassis terminal
0	Caution - refer to accompanying documents
$\underline{1}$	Earth (ground) terminal
\cdots	Battery
\checkmark	Fuse
1	On (supply)
\bigcirc	Off (supply)

SPECIFICATIONS

Chop Frequency	4 Hz to 400 Hz with 6 slot blade. 400 Hz to 3.7 kHz with 30 slot blade.
Frequency Stability	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical.
Long Term Frequency Drift	$<2 \%, 100 \mathrm{~Hz}<\mathrm{f}<3700 \mathrm{~Hz}$
Phase Jitter	$0.2^{\circ} \mathrm{rms}$ from 50 Hz to 400 Hz . $0.5^{\circ} \mathrm{rms}$ from 400 Hz to 3.7 kHz .
Frequency Display	4 digit, 1 Hz resolution, 1 Hz accuracy.
Frequency Control	10 turn pot with 3 ranges: 4 Hz to 40 Hz 40 Hz to 400 Hz 400 Hz to 3.7 kHz
VCO	0 to 10 VDC. Control voltage overrides frequency dial.
Reference Modes	Switch $\frac{\text { Left BNC }}{}$ Right BNC up $f_{\text {inner }}$ f middle $5 \times f$ f down $f+f_{\text {inner }}$ $f-f_{\text {inner }}$
Dimensions	Controller Chopper Head $2.8^{\prime \prime} \times 2.1^{\prime \prime} \times 5.1^{\prime \prime} \times 1.8^{\prime \prime}$ Blade Diameter $4.00^{\prime \prime}$
Power	$\begin{aligned} & 100 / 120 / 220 / 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \\ & 12 \text { Watts } \end{aligned}$
Warranty	Electronics - One year parts and labor on materials and workmanship. Chopper Motor - Ninety days parts and labor on materials and workmanship.

SAFETY AND PREPARATION

Figure 1-Power Entry Module

Voltage Selector Card Orientation

$* * * * * * * * * * * *$ CAUTISN $* * * * * * * * * * * *$
This instrument may be damaged if operated with the LINE VOLTAGE SELECTOR set for the wrong ac input-source voltage or if the wrong fuse is installed.

LINE VOLTAGE SELECTION

The SR540 operates from a $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$, or 240 V nominal ac power source having a line frequency of 50 or 60 Hz . Before connecting the power cord to a power source, verify that the LINE VOLTAGE SELECTOR card, located in the rear panel fuse holder, is set so that the correct ac input voltage value is visible (figure 1).

To Change Voltage Selected: Open the cover on the power entry module using a small screwdriver; pull the voltage selector card straight out using long-nose pliers; orient selector card so that the desired voltage is readable at the bottom; orient the indicator pin to point up when desired voltage is readable at the bottom (figure 2); insert voltage selector card into housing, printed side facing left, and edge containing desired voltage first; replace cover and verify that the indicator pin shows the desired voltage.

Power Entry Module

Figure 2 - Voltage Selector Card

LINE FUSE

Verify that the correct line fuse is installed before connecting the line cord. For 100 V and 120 V , use a $1 / 4 \mathrm{Amp}$ fuse and for 220 V and 240 V , use a $1 / 8 \mathrm{Amp}$ fuse.

LINE CORD

This instrument has a detachable, three-wire power cord with a three-contact plug for connection to both the power source and protective ground. The protective ground contact connects to the accessible metal parts of the instrument. To prevent electrical shock, always use a power source outlet that has a properly grounded protective-ground contact.

OPERATE ONLY WITH COVERS IN PLACE

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without all covers and panels in place.

KEEP HANDS CLEAR OF CHOPPER BLADE

Quick Start Instructions

1. Make sure the correct line voltage is selected, the correct fuse is installed, and the power switch is off.
2. Connect the chopper head to the controller with the supplied coiled cord.
3. Mount the 30 slot wheel for 400 Hz to 3.7 kHz or the 6 slot wheel for 4 Hz to 400 Hz , and set the MAX FREQ/SLOT switch on the front panel for the desired frequency range.
4. Set the REFERENCE MODE switch 'up'. In this position the right BNC output is at f, the chop frequency of the outer row of slots; and the left BNC output is at $f_{\text {inner }}$, the chop frequency of the inner row of slots.
5. Connect the lock-in's reference input to the output that corresponds to the row of slots that will be used.
6. Turn the power switch on and adjust the 10 -turn dial for the desired chop frequency.

Figure 3-Chopper Controller Front and Rear Panels

OPERATING INSTRUCTIONS

INTRODUCTION

The Model SR540 Optical Chopper is used to square-wave modulate the intensity of optical signals. The unit can chop light sources at rates from 4 Hz to 3.7 kHz . Versatile, low jitter reference outputs provide the synchronizing signals required for several operating modes: single or dual beam; sum \& difference frequency; and synthesized chopping to 20 kHz .

FREQUENCY OF OPERATION

The choice of operating frequency is influenced by several factors:

1. Avoid low frequency operation (below 100 Hz). In general, phase jitter, background noise and lock-in amplifier noise all degrade at low frequencies.
2. Avoid high frequency operation. Motor lifetime will be reduced if the unit is operated for extended periods above 2 KHz .
3. Avoid known noise frequencies. For example, the line frequency and all its even and odd harmonics should be carefully avoided.
4. Avoid using the bottom 10% of the frequency control dial. The phase jitter
of the reference outputs will degrade at the low end of the range, so switch to the next lower MAX FREQ / SLOTS range.
5. Always use the correct wheel as indicated by the MAX FREQ / SLOTS switch. Using the wrong wheel will seriously degrade the performance of the synthesized reference outputs (left BNC). For frequencies from 4 Hz to 400 Hz use the $6 / 5$ slot blade; from 400 Hz to 3.7 kHz use the $30 / 25$ slot blade.

CHANGING BLADES

The chopper blade (figure 4) may be replaced by removing the three flat head screws, which hold the outside hub to the wheel. When replacing the blade, be sure to insert the blade between the slotted optical detectors before placing it on the wheel. Secure the blade by sandwiching it between the wheel and outer hub. Install and loosely tighten the three flat head screws, which hold the hub to the wheel. Then firmly tighten all three screws. Handle blades carefully as they are easily bent.

BASEPLATE REMOVAL

The baseplate of the unit may be removed to allow for pole mounting. Use an allen wrench to remove the $6-32$ bolt from the bottom of the baseplate.

Figure 4-30/25 Slot and 6/5 Slot Chopper Blades

APPLICATIONS

SINGLE BEAM EXPERIMENT

In this application, a single optical beam is chopped by the outer row of slots, and the reference output from the right BNC is used to lock the lock-in amplifier to a chop frequency (figure 5). Note, that the inner row of slots
could be used, in which case the reference from the left BNC would be used. In either case, the REFERENCE MODE switch is in the 'up' position.

Figure 5 - Single Beam Experiment

SINGLE BEAM EXPERIMENT WITH EFFECTIVE CHOP FREQUENCIES TO 20 KHZ

In certain situations very high chop frequencies are desirable. For example, you can infer the lifetime of a fluorescent decay by measuring the phase shift between the light which excites the material and the fluorescent decay output.

$$
\tau=\tan \varnothing / 2 \pi f
$$

where \varnothing is the observed phase shift, f is the chop frequency, and t is the lifetime. Accuracy is improved by using a chop frequency,

$$
f \sim 1 / 2 \pi \tau
$$

so that small errors in the phase measurement will not drastically affect the lifetime.

When a small diameter beam is chopped by a blade, the light intensity vs. time is a square wave,

$$
I(t)=I o(\sin w t+1 / 3 \sin 3 w t+1 / 5 \sin 5 w t+\ldots)
$$

Providing that the optical media is not saturated by the light beam, the media will respond linearly to each Fourier component. In this case, we are interested in the response at the 5th harmonic, for which the chopper controller has a reference signal output at $5 f$.

To use this feature, set the REFERENCE MODE switch to the center position and use the left BNC reference output as the reference input to the lock-in amplifier (figure 6). The lock-in will now detect the response from the experiment at the 5th harmonic of the chop frequency (up to 20 kHz). Note that the

Figure 6 - Single Beam with Effective Chop Frequencies to 20 kHz

Figure 7 - Amplitude of the 5th Harmonic vs. Beam Size
amplitude of the 5th harmonic term will depend on beam size. For a beam with diameter b, using the 30 slot wheel with a slot aperture L, the amplitude of the nth harmonic is given by,

$$
\mathrm{a}_{\mathrm{n}}=\frac{4}{\mathrm{n}^{2} \pi^{2}} \quad \frac{\underline{L}}{\mathrm{~b}} \cos \frac{\mathrm{n} \pi}{2}(1-\mathrm{b} / \mathrm{L})
$$

The amplitude of the 5th harmonic vs. beam size is plotted in figure 7. If your beam is much larger than 0.5 mm , you may wish to pass the beam through an aperture or bring it to focus at the chopper blade.

DUAL BEAM EXPERIMENTS

In this arrangement, the output from a single source is split in two and chopped at two different frequencies by the same chopper wheel (figure 8). One of the beams passes through the experiment, while the other beam, a reference beam, passes through a control arm. The beams are recombined and sent to the same detector.

Two lock-in's are used to detect the two signals which are at different frequencies. The signal at f corresponds to the control arm, the signal at
$f_{\text {inner }}$ is the response from the experimental arm. If the detected signal in the experimental arm is ratioed to the detected signal in the control arm, then effects due to changing source intensity and detector efficiency are removed.

Also note that each beam passes through one beam splitter, reflects off one beam splitter, and reflects off one mirror, so that effects due to these components are cancelled in the ratio output.

Figure 8 - Dual Beam Experiment

DETECTION AT THE SUM \& DIFFERENCE FREQUENCIES

Certain applications require detection at the sum or difference frequency of two chopped beams. In figure 9, a source beam is split into two. One of the beams is chopped by the outer row of slots on the wheel, the other is chopped by the
inner row. By placing the REFERENCE MODE switch in the down position, the sum frequency is available at the left reference BNC and the difference frequency is available at the right BNC .

Figure 9 - Sum and Difference Frequency Detection

VARIABLE APERTURE

In some situations one must reduce the duty cycle of a chopped optical beam. This can be done with the SR540 by mounting two identical blades and staggering their position relative to each other.

The minimum slot aperture is about 0.5 mm , below which the slotted optical detector will fail to detect the outer row of slots. This corresponds to a 10% duty cycle on the 30 slot
blade and a 2% duty cycle on the 6 slot blade. For duty cycles less than 20%, you should select the "pulse mode" reference level on the lock-in. Since the $f / 6$ notch is obscured when two blades are mounted, only the $f \& 5 f$ reference outputs will work ($f_{\text {inner }}, f_{\text {sum }}$, and $f_{\text {diff }}$ will not work). You may observe the duty cycle of the chopped beam on the f output.

CALIBRATION

Only one adjustment is required to calibrate the SR540 Chopper Controller. The adjustment pot located on the rear panel is used to match the controller to the motor. Mount the 30 -slot blade, and set the MAX FREQ/SLOT switch to

CIRCUIT DESCRIPTION

MOTOR SPEED CONTROL

The output of U5, a precision 10.000 VDC reference, is attenuated by P2, the ten-turn potentiometer, to control the motor speed. The set voltage can be overridden by a voltage at the CONTROL VOLTAGE input. The speed control voltage is buffered by $2 / 4$ of U3, and attenuated by R8, R9 and R10. U2, a quad analog switch, selects the attenuation factor to provide full-scale voltages of $10.0,5.0$ or 0.5 VDC per the setting of the MAX FREQ/SLOTS switch. The $3 / 4$ of U3 is used to amplify this voltage by about x 2.6 . The MOTOR CAL pot, P 1 , is used to adjust the gain of this amplifier to compensate for variations between motors. The output of the amplifier is buffered by U1 to drive the motor. R4 senses and limits the motor current to 200 mA by turning on Q1. The $1 / 4$ of U3 feeds-back a voltage equal to the voltage applied to the motor minus 4.7 times the voltage across R4. Since the feedback voltage goes down when current is increased, the voltage applied to the motor will go up; hence the output behaves like a negative resistance connected to a voltage source. The negative resistance is about $\mathrm{R} 4 \times 4.7, \sim 15 \Omega$. This is just equal to the real resistance of the cable and motor windings. With this arrangement, the speed of the motor will not be affected by load variations, which normally would change the current and so change the voltage that is applied to the motor. This improves frequency stability of the chopper and

4 kHz . Set the FREQUENCY ADJUST dial to 7.5, and use a small screwdriver to adjust the MOTOR CAL pot so that the four digit display shows $3000 \pm 10 \mathrm{~Hz}$.
improves the linearity of the speed vs. control voltage characteristic.

OPTICAL PICK-OFFS

There are two slotted optical switches, which detect slots in the chopper wheel. Each optical switch uses an infrared LED and a phototransistor. If the light passes through a slot to the phototransistor, its collector current will be several milliamps. The collectors of the photo transistors are connected together, summing their currents. The common collector is held at 3.0 VDC by $4 / 4$ of U3. The current is sensed by R15, so that the output of $4 / 4 \mathrm{U} 3$ will swing by 1 volt $/ \mathrm{mA}$ of collector current.
Radiated noise at the chop frequency is greatly reduced, as all lines going to the chopper head are held at constant voltage.

The waveform at pin 14 of U3 looks like this:

The current from one of the optical switches is just a square wave at the frequency of the outer row of slots. The outputs from the second photo transistor places a pulse on top of every sixth pulse, per the chopper wheel design. This second signal provides a signal at $\mathrm{f} / 6$, with
known phase, which is used to synthesize other reference outputs.

Logic signals at f \& $\mathrm{f} / 6$ are generated by the dual
comparator U6. The $1 / 2$ of U6 compares the photo current signal to a fixed voltage of about 3.6 VDC in order to generate f. The $2 / 2$ of U6 compares the photo current signal to the peak value of the photo current signal, less two diode drops. Comparing to the peak voltage compensates for variations in LED \& phototransistor sensitivity. Both comparators have about 0.2 V of hysteresis to prevent multiple edges on logic transitions.

FREQUENCY SYNTHESIS

The outer row frequency, f, is measured directly by one of the phototransistors. The difference between the outer \& inner row frequencies, $\mathrm{f} / 6$, is measured by the other phototransistor. The other frequencies are synthesized from these two references by a phase-lock loop circuit.

Name		Frequency	
		Description outer row	
$5 f$	$5 f$	5 x outer row	
$f_{\text {inner }}$	$5 f / 6$		inner row
$f_{\text {sum }}$	$11 f / 6$		outer row + inner row
$f_{\text {diff }}$	$f / 6$		outer row - inner row

The Dual 1:4 Multiplexer, U17, is used to pass f or $\mathrm{f} / 6$ to the right hand reference output BNC per the setting of the REFERENCE MODE switch, SW1. U17 also selects f of $f / 6$ as a source to the PLL frequency synthesizer circuit.

To generate $5 \mathrm{f} / 6$, the frequency of the inner row of slots, U 17 selects $\mathrm{f} / 6$ as the input to the phase detector of U12, a CMOS phase-lock loop. The output of the phase detector is filtered by R23, R24, and C3. The quad analog switch, U4, will also switch in C2 or C1 if the 400 Hz or 40 Hz MAX FREQ/SLOTS ranges are selected at SW2. The filtered output of the phase detector controls the VCO frequency. The maximum frequency of the VCO is set by R22. U4 increases the maximum frequency by switching in R20 or R21 when the 400 Hz or 4 KHz ranges
are selected. The output frequency of the VCO is divided by U18, which is programmed to divide by 5 or 11 per the setting of the REFERENCE MODE switch, SW1. To generate $5 \mathrm{f} / 6$, U18 loads 10 when the counter reaches 15 to divide by 5 . In order for the frequencies at the input of the phase comparator to be equal, the VCO must run at $5 \mathrm{xf} / 6$.

The same circuit is used to generate 5 f , however, the multiplexer, U17, selects f (not $\mathrm{f} / 6$) as the input to the phase detector. To generate $11 \mathrm{f} / 6$, the sum frequency, $\mathrm{f} / 6$ is selected as the input to the phase detector, and U18 is programmed to divide by 11 by presetting to 4 when the counter reaches 15 . In all cases, the output of the VCO is passed to the left reference output BNC. This output is always a square wave.

FREQUENCY DISPLAY

The four-digit frequency display always shows the frequency, f, of the outer row of slots, independent of the reference mode, which has been selected. The time base for the counter is a $32,768 \mathrm{~Hz}$ crystal oscillator, which is sustained by U10, a hex inverter. U11, a 14 -stage binary counter and the flip-flop 2/2 U14 are used to divide by 215 to generate a 1.000 -second gate.

In order to eliminate one-count flicker in the result, the count latch $1 / 2 \mathrm{U} 14$, is set by a falling edge of the wave form which is to be counted. When the count latch is set, the reset to the time base counters is released, starting the one-second-count period. Also, the reset to U15, the four-decade counter/latch/display driver is released to begin the count. The count accumulates for 1 second, when, the falling edge of the Q output from $2 / 2 \mathrm{U} 14$ sets $1 / 2 \mathrm{U} 13$ high. The Q output of $1 / 2 \mathrm{U} 13$ stays high for about $1 / 2$ clock period ($15 \mu \mathrm{~s}$) asserting the Latch Enable input on U15 to transfer the counter contents to the latch for display. Then $1 / 2 \mathrm{U} 13$ is reset, and $2 / 2 \mathrm{U} 13$ is clocked high, asserting the Q-bar output to reset the count latch. The entire count cycle begins with the next falling edge from the opto pick-off comparator. If the wheel stops, so there are no
more pulses to count, the reset to U15 will be asserted indefinitely. After a few seconds, R36 will charge C13 to assert the Disp Sel to U15, causing the contents of the counters (which are zero) to be displayed instead of the contents of the latches (which contain the last count). U15 multiplexes the display information to the 4 digit common cathode LED. Each of the digits are selected in sequence by U15 saturating one of the display driver transistors Q2-Q5.

POWER SUPPLIES

The power transformer primary is tapped for operation at $100,120,220$, or 240 VAC . The power entry module does the required switching. Full wave bridge rectifiers are used to rectify the 7.5 VAC and 30 VAC to 8.5 VDC and 40VDC. The unregulated 40VDC is used by U1 the motor driver transistor, and by U8 to provide regulated 30 VDC . The 30 VDC is the DC supply to U7, a +15 VDC regulator. U9 regulates the 8.5 VDC to 5.0 VDC .

Motor and Motor related Parts List

C 15	$5-00102-517$	4.7U
J 2	$1-00030-100$	4P4C
M 1	$7-00055-700$	12VDC
O 1	$3-00173-309$	MOC70U2
O 2	$3-00173-309$	MOC70U2
PC1	$7-00056-701$	SR541
R 30	$-00000-000$	UNDECIDED PART
R 33	$-00000-000$	UNDECIDED PART
Z 0	$0-00146-025$	$6-32 X 3 / 8 H$
Z 0	$0-00147-004$	$1 / 4-20 X 1 "$
Z 0	$0-00150-026$	$4-40 X 1 / 4 P F$
Z 0	$0-00151-055$	DC-44-4C-6
Z 0	$0-00205-058$	EPOXY GLUE
Z 0	$0-00222-021$	$6-32 X 1 / 4 P P$
Z 0	$7-00057-720$	SR540-1
Z 0	$7-00058-716$	SR540-10
Z 0	$7-00059-721$	SR540-2
Z 0	$7-00060-721$	SR540-3
Z 0	$7-00061-721$	SR540-6
Z 0	$7-00062-716$	SR540-9

Main Board and Chassis Assembly Parts List
BR1 3-00062-340 KBP201G/BR 81D

BR2 3-00062-340
 C 1 5-00031-520 220U

C 2 5-00033-520 47U
C 3 5-00192-542 22U MIN
C 4 5-00100-517 2.2U
C 5 5-00127-524 2.2U
C 6 5-00128-509 470U
C 7 5-00023-529 .1U
C 8 5-00038-509 10U
C 9 0-00772-000 1.5" WIRE
C 10 5-00064-513 .0047U
C 11 5-00100-517 2.2U
C 12 5-00030-520 2200U
C 13 5-00038-509 10U
C 14 5-00023-529 .1U
C 17 5-00023-529 . 1 U
C 18 5-00100-517 2.2U
C 19 5-00192-542 22U MIN
C 20 5-00064-513 .0047U
CX1 5-00003-501 10P
CX2 5-00017-501 47P
D 1 3-00004-301 1N4148
D 2 3-00004-301 1N4148

Capacitor, Tantalum, 35V, 20\%, Rad Connector, Misc.
Misc. Parts
Optical Switch
Optical Switch
Printed Circuit Board
Hardware, Misc.
Hardware, Misc.
Screw, Allen Head
Knobs
Screw, Black, All Types
Wire, Other
Glue
Screw, Panhead Phillips
Fabricated Part
Chemically Etched Part
Machined Part
Machined Part
Machined Part
Chemically Etched Part

Integrated Circuit (Thru-hole Pkg)
Integrated Circuit (Thru-hole Pkg)
Capacitor, Electrolytic, 16V, 20\%, Rad
Capacitor, Electrolytic, 16V, 20\%, Rad
Cap, Mini Electrolytic, 50V, 20\% Radial
Capacitor, Tantalum, 35V, 20\%, Rad
Capacitor, Tantalum, 50V, 20\%, Rad
Capacitor, Electrolytic, 50V, 20\%, Rad
Cap, Monolythic Ceramic, 50V, 20\%, Z5U
Capacitor, Electrolytic, 50V, 20\%, Rad Hardware, Misc.
Capacitor, Mylar/Poly, 50V, 5\%, Rad
Capacitor, Tantalum, 35V, 20\%, Rad
Capacitor, Electrolytic, 16V, 20\%, Rad
Capacitor, Electrolytic, 50V, 20\%, Rad
Cap, Monolythic Ceramic, 50V, 20\%, Z5U
Cap, Monolythic Ceramic, 50V, 20\%, Z5U
Capacitor, Tantalum, 35V, 20\%, Rad
Cap, Mini Electrolytic, 50V, 20\% Radial
Capacitor, Mylar/Poly, 50V, 5\%, Rad
Capacitor, Ceramic Disc, 50V, 10\%, SL
Capacitor, Ceramic Disc, 50V, 10\%, SL
Diode
Diode

DX100	3-00203-301	1N5711
F 1	6-00002-611	.25A 3AG
J 1	1-00030-100	4P4C
J 3	1-00031-133	16 PIN SRA
P 1	4-00271-445	2.0 K
P 2	4-00019-443	20K
PC1	7-00054-701	SR540
PC2	7-00558-701	SR540 LED
Q 2	3-00020-325	PN2222
Q 3	3-00020-325	PN2222
Q 4	3-00020-325	PN2222
Q 5	3-00020-325	PN2222
Q 6	3-00020-325	PN2222
R 2	4-00273-401	5.6K
R 3	4-00305-401	4.3K
R 4	4-00773-402	2.2
R 5	4-00031-401	100
R 6	4-00034-401	10K
R 7	4-00034-401	10K
R 8	4-00188-407	4.99 K
R 9	4-00187-407	4.53 K
R 10	4-00193-407	499
R 11	4-00061-401	240K
R 12	4-00034-401	10K
R 13	4-00048-401	2.2K
R 14	4-00078-401	39K
R 15	4-00021-401	1.0K
R 16	4-00272-407	221
R 17	4-00188-407	4.99K
R 18	4-00021-401	1.0K
R 19	4-00059-401	22K
R 20	4-00614-407	174K
R 21	4-00037-401	11 K
R 22	4-00131-407	1.00 M
R 23	4-00094-401	6.8K
R 24	4-00090-401	560
R 25	4-00054-401	200K
R 26	4-00035-401	10M
R 28	4-00021-401	1.0K
R 29	4-00034-401	10 K
R 31	4-00032-401	100K
R 32	4-00032-401	100K
R 34	4-00057-401	220
R 35	4-00057-401	220
R 36	4-00032-401	100K
R 37	4-00034-401	10 K
R 38	4-00034-401	10K
R 39	4-00273-401	5.6K
R 40	4-00024-401	1.2K

Diode
Fuse
Connector, Misc.
Connector, Male, Right Angle
Pot, Multi-Turn, Side Adjust
Pot, 10-Turn Panel
Printed Circuit Board
Printed Circuit Board
Transistor, TO-92 Package
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Comp, 1/2W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Carbon Film, 1/4W, 5\%
Resistor, Metal Film, 1/8W, 1\%, 50PPM
Resistor, Carbon Film, 1/4W, 5\%

R 41	4-00031-401	100
R 42	4-00021-401	1.0 K
R 43	4-00059-401	22K
R 44	4-00021-401	1.0K
R 45	4-00022-401	1.0 M
R 46	4-00107-402	10
R 99	4-00081-401	470
R 100	4-00355-435	56V/500A
SW1	2-00012-206	SPDT
SW2	2-00012-206	SPDT
T 1	6-00014-610	SR540
TH100	4-00766-431	RXE030
U 1	3-00257-329	TIP41B
U 2	3-00074-340	CD4066
U 3	3-00098-340	LM324
U 4	3-00074-340	CD4066
U 5	3-00188-340	LH0070-0H
U 6	3-00143-340	LM393
U 7	3-00114-329	7815
U 8	3-00149-329	LM317T
U 9	3-00112-329	7805
U 10	3-00051-340	74HCU04
U 11	3-00169-340	74HC4020
U 12	3-00072-340	CD4046
U 13	3-00048-340	74 HC 73
U 14	3-00048-340	74 HC 73
U 15	3-00170-340	74C926
U 17	3-00166-340	74 HC 153
U 18	3-00171-340	74HC191
XT1	6-00015-620	32.768 KHZ
Z 0	0-00002-008	2607
Z 0	0-00009-000	FOOT
Z 0	0-00025-005	3/8"
Z 0	0-00048-011	6-32 KEP
Z 0	0-00089-033	4"
Z 0	0-00103-040	3/8X3/32
Z 0	0-00127-050	4" \#18 RED
Z 0	0-00128-053	4" \#24
Z 0	0-00129-053	5" \# 24
Z 0	0-00134-053	7-1/4" \#24
Z 0	0-00149-020	4-40X1/4PF
Z 0	0-00153-057	GROMMET2
Z 0	0-00155-002	6VM4S
Z 0	0-00185-021	6-32X3/8PP
Z 0	0-00207-003	TO-5
Z 0	0-00209-021	4-40X3/8PP
Z 0	0-00222-021	6-32X1/4PP
Z 0	0-00238-026	6-32X1/4PF
Z 0	0-00447-007	TO-220

Resistor, Carbon Film, 1/4W, 5\%
Resistor, Carbon Comp, 1/2W, 5\%
Resistor, Carbon Film, 1/4W, 5\%
Varistor, Zinc Oxide Nonlinear Resistor
Switch, On-Off-On, Toggle,Right Angle
Switch, On-Off-On, Toggle,Right Angle
Transformer
Thermistor, various
Voltage Reg., TO-220 (TAB) Package
Integrated Circuit (Thru-hole Pkg)
Voltage Reg., TO-220 (TAB) Package
Voltage Reg., TO-220 (TAB) Package
Voltage Reg., TO-220 (TAB) Package
Integrated Circuit (Thru-hole Pkg)
Crystal
Dial
Hardware, Misc.
Lugs
Nut, Kep
Tie
Washer, Flat
Wire \#18 UL1007 Stripped $3 / 8 \times 3 / 8$ No Tin
Wire \#24 UL1007 Strip $1 / 4 \times 1 / 4$ Tin
Wire \#24 UL1007 Strip $1 / 4 \times 1 / 4$ Tin
Wire \#24 UL1007 Strip 1/4x1/4 Tin
Screw, Flathead Phillips
Grommet
Power Entry Hardware
Screw, Panhead Phillips
Insulators
Screw, Panhead Phillips
Screw, Panhead Phillips
Screw, Black, All Types
Heat Sinks

Z 0	$0-00524-048$	$8-1 / 4 " \# 18$
Z 0	$0-00594-050$	$4-1 / 2 " \# 18$ BLUE
Z 0	$1-00003-120$	BNC
Z 0	$1-00053-172$	USA
Z 0	$3-00556-340$	HDSP-5323
Z 0	$7-00064-720$	SR540-7
Z 0	$7-00065-720$	SR540-8
Z 0	$7-00066-709$	SR540-11

Wire, \#18 UL1015 Strip $3 / 8 \times 3 / 8$ No Tin
Wire \#18 UL1007 Stripped $3 / 8 \times 3 / 8$ No Tin
Connector, BNC
Line Cord
Integrated Circuit (Thru-hole Pkg)
Fabricated Part
Fabricated Part
Lexan Overlay

PC LAYOUT

